

Steve Risotto June 28, 2019

Previous Conclusions Regarding 1,4-Dioxane Carcinogenicity (~2010-2013)

- 1,4-DX is readily metabolized at lower doses;
 metabolic saturation occurs at higher doses
- Clear evidence that 1,4-DX and metabolites are not genotoxic
 - ➤ Heath Canada, WHO, and EU: tumors form only after metabolic saturation → non-linear (threshold) mode of action (MOA)
- USEPA 2013: there are data supporting a threshold MOA, but --
 - Incomplete evidence that cytotoxicity/proliferation precede tumors
 - Metabolism not completely characterized
 - Lack of evidence of a proliferative response

Low-Dose Extrapolation (Linear vs Threshold)

Key Events in the Regenerative MOA for Carcinogenicity

Source: EPA 2013

Progression to Tumors

Reg Tox Pharma 88:45-55 (2017)
Toxicokinetics characterized
Threshold for metabolism
identified

Reg Tox Pharma 68:387-401 (2014)

Liver cell toxicity & proliferation observed in reanalysis of National Cancer Institute (NCI) slides

Characterization of Metabolism - fate of 1,4-DX in rodents

Characterization of Metabolism -Blood Levels in Female Mice (ACC data)

Proliferative Response in Female Mice (ACC data)

- Gene sets related to proliferation significantly enriched after 90 days at 6000 ppm
 - Regulation of Mitotic Cell Cycle
 - Negative Regulation of Mitotic Cell Cycle
 - Mitotic Cell Cycle Checkpoint
 - Positive Regulation of Mitotic Sister Chromatid Separation
 - Mitotic G1-G1 S Phase
 - M-G1 Transition
 - Cell Cycle Mitotic

Differential Gene Expression (ACC data)

• Alterations at the transcriptomic level were minimal, but with a clear threshold demonstrated

Key Events in the Regenerative MOA for Carcinogenicity

Source: EPA 2013